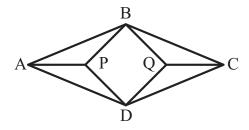
| 1.    | Hal has a positive secret number. He performs a sequence of operations with his secret number. He doubles the number, subtracts 8, divides by 4, adds 2 and squares the result to get 25. What is Hal's secret number?                                        |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. \$ | Toni goes to a department store and buys two shirts marked the same price. She pays full price for the first shirt but gets a 40% discount on the second shirt. If she pays a total of \$32.40 for the two shirts, how much did she pay for the second shirt? |

| 3 | The table lists the number of Wednesdays on which the Norton Middle School           |
|---|--------------------------------------------------------------------------------------|
|   | cafeteria served each of four different entrées and each of three different desserts |
|   | during the previous school year. If the entrée and dessert served each Wednesday     |
|   | were selected independently and randomly, based on this data, what is the            |

probability that the Norton Middle School cafeteria served pizza and lemon cake on the first Wednesday of the previous school year? Express your answer as common fraction.


| Entree       |    | Dessert    |    |
|--------------|----|------------|----|
| Pizza        | 15 | Lemon Cake | 20 |
| Chicken      | 8  | Apple Pie  | 8  |
| Fish & Chips | 10 | Brownies   | 12 |
| Tacos        | 7  |            |    |

How many integers x, with  $0 < x \le 100$ , are divisible by 2, 3 and 4? integers

| 5              | Two circles, each of radius 5 units, have centers at the origin and at (7, 7), respectively. What is the <i>y</i> -intercept of the line that contains their common chord? |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                                                                            |
|                |                                                                                                                                                                            |
|                |                                                                                                                                                                            |
|                |                                                                                                                                                                            |
|                |                                                                                                                                                                            |
| 6. <u>ways</u> | How many ways are there to choose positive integers $a$ , $b$ and $c$ , not necessarily distinct, so that $a + b < c$ and $c \le 5$ ?                                      |
| 6. <u>ways</u> |                                                                                                                                                                            |
| 6. ways        |                                                                                                                                                                            |
| 6. <u>ways</u> |                                                                                                                                                                            |
| 6. ways        |                                                                                                                                                                            |
| 6. <u>ways</u> |                                                                                                                                                                            |



The figure shows points P and Q inside rhombus ABCD so that segments AP, BP, BQ, CQ, DQ and DP are all congruent. If the measure of angle BAD is 40°, what is the degree measure of angle PDQ?



A company sells popcorn in cylindrical canisters. Marketing indicates that wider canisters will increase sales. If the diameter of the canister is increased by 27% while keeping the volume of the canister the same, by what percent must the height be decreased? Express your answer to the nearest whole number.