Lesson 8: Applying the Properties of Operations to Add and Subtract Rational Numbers

Classwork

Example 1: The Opposite of a Sum is the Sum of its Opposites

Explain the meaning of "The opposite of a sum is the sum of its opposites." Use a specific math example.

Exercise 1

Represent the following expression with a single rational number.

$$-2\frac{2}{5} + 3\frac{1}{4} - \frac{3}{5}$$

Example 2: A Mixed Number Is a Sum

Use the number line model shown below to explain and write the opposite of $2\frac{2}{5}$ as a sum of two rational numbers.

The opposite of a sum (top single arrow pointing left) and the sum of the opposites correspond to the same point on the number line.

Exercise 2

Rewrite each mixed number as the sum of two signed numbers.

a.
$$-9\frac{5}{8}$$

b.
$$-2\frac{1}{2}$$

c.
$$8\frac{11}{12}$$

Exercise 3

Represent each sum as a mixed number.

a.
$$-1 + \left(-\frac{5}{12}\right)$$
 b. $30 + \frac{1}{8}$

b.
$$30 + \frac{1}{8}$$

c.
$$-17 + \left(-\frac{1}{9}\right)$$

Exercise 4

Mr. Mitchell lost 10 pounds over the summer by jogging each week. By winter, he had gained $5\frac{1}{8}$ pounds. Represent this situation with an expression involving signed numbers. What is the overall change in Mr. Mitchell's weight?

Exercise 5

Jamal is completing a math problem and represents the expression $-5\frac{5}{7}+8-3\frac{2}{7}$ with a single rational number as shown in the steps below. Justify each of Jamal's steps. Then, show another way to solve the problem.

$$= -5\frac{5}{7} + 8 + \left(-3\frac{2}{7}\right)$$

$$= -5\frac{5}{7} + \left(-3\frac{2}{7}\right) + 8$$

$$= -5 + \left(-\frac{5}{7}\right) + (-3) + \left(-\frac{2}{7}\right) + 8$$

$$= -5 + \left(-\frac{5}{7}\right) + \left(-\frac{2}{7}\right) + (-3) + 8$$

$$= -5 + (-1) + (-3) + 8$$

$$= -6 + (-3) + 8$$

$$= (-9) + 8$$

$$= -1$$

Lesson Summary

Use the properties of operations to add and subtract rational numbers more efficiently. For instance,

$$-5\frac{2}{9} + 3.7 + 5\frac{2}{9} = \left(-5\frac{2}{9} + 5\frac{2}{9}\right) + 3.7 = 0 + 3.7 = 3.7.$$

• The opposite of a sum is the sum of its opposites as shown in the examples that follow:

$$-4\frac{4}{7} = -4 + \left(-\frac{4}{7}\right)$$

$$-(5 + 3) = -5 + (-3)$$

Problem Set

1. Represent each sum as a single rational number.

a.
$$-14 + \left(-\frac{8}{9}\right)$$

b.
$$7 + \frac{1}{9}$$

c.
$$-3 + \left(-\frac{1}{6}\right)$$

Rewrite each of the following to show that the opposite of a sum is the sum of the opposites. Problem 2 has been completed as an example.

2.
$$-(9+8) = -9 + (-8)$$

 $-17 = -17$

3.
$$-\left(\frac{1}{4}+6\right)$$

4.
$$-(10 + (-6))$$

5.
$$-\left((-55) + \frac{1}{2}\right)$$

Use your knowledge of rational numbers to answer the following questions.

- 6. Meghan said the opposite of the sum of -12 and 4 is 8. Do you agree? Why or why not?
- 7. Jolene lost her wallet at the mall. It had \$10 in it. When she got home, her brother felt sorry for her and gave her \$5.75. Represent this situation with an expression involving rational numbers. What is the overall change in the amount of money Jolene has?
- 8. Isaiah is completing a math problem and is at the last step: $25 28\frac{1}{5}$. What is the answer? Show your work.

- 9. A number added to its opposite equals zero. What do you suppose is true about *a sum added to its opposite*?

 Use the following examples to reach a conclusion. Express the answer to each example as a single rational number.
 - a. (3+4)+(-3+-4)
 - b. (-8+1)+(8+(-1))
 - c. $\left(-\frac{1}{2} + \left(-\frac{1}{4}\right)\right) + \left(\frac{1}{2} + \frac{1}{4}\right)$

