Lesson 8: Applying the Properties of Operations to Add and

Subtract Rational Numbers

Classwork

Example 1: The Opposite of a Sum is the Sum of its Opposites
Explain the meaning of "The opposite of a sum is the sum of its opposites." Use a specific math example.

Opposite Rational Number	Opposite Rational Number	Sum

Exercise 1

Represent the following expression with a single rational number.
$-2 \frac{2}{5}+3 \frac{1}{4}-\frac{3}{5}$

Example 2: A Mixed Number Is a Sum

Use the number line model shown below to explain and write the opposite of $2 \frac{2}{5}$ as a sum of two rational numbers.

The opposite of a sum (top single arrow pointing left) and the sum of the opposites correspond to the same point on the number line.

Exercise 2

Rewrite each mixed number as the sum of two signed numbers.
a. $-9 \frac{5}{8}$
b. $-2 \frac{1}{2}$
c. $8 \frac{11}{12}$

Exercise 3

Represent each sum as a mixed number.
a. $-1+\left(-\frac{5}{12}\right)$
b. $\quad 30+\frac{1}{8}$
c. $-17+\left(-\frac{1}{9}\right)$

Exercise 4

Mr. Mitchell lost 10 pounds over the summer by jogging each week. By winter, he had gained $5 \frac{1}{8}$ pounds. Represent this situation with an expression involving signed numbers. What is the overall change in Mr. Mitchell's weight?

Exercise 5

Jamal is completing a math problem and represents the expression $-5 \frac{5}{7}+8-3 \frac{2}{7}$ with a single rational number as shown in the steps below. Justify each of Jamal's steps. Then, show another way to solve the problem.
$=-5 \frac{5}{7}+8+\left(-3 \frac{2}{7}\right)$
$=-5 \frac{5}{7}+\left(-3 \frac{2}{7}\right)+8$
$=-5+\left(-\frac{5}{7}\right)+(-3)+\left(-\frac{2}{7}\right)+8$
$=-5+\left(-\frac{5}{7}\right)+\left(-\frac{2}{7}\right)+(-3)+8$
$=-5+(-1)+(-3)+8$
$=-6+(-3)+8$
$=(-9)+8$
$=-1$

Lesson Summary

- Use the properties of operations to add and subtract rational numbers more efficiently. For instance,

$$
-5 \frac{2}{9}+3.7+5 \frac{2}{9}=\left(-5 \frac{2}{9}+5 \frac{2}{9}\right)+3.7=0+3.7=3.7
$$

- The opposite of a sum is the sum of its opposites as shown in the examples that follow:

$$
\begin{aligned}
& -4 \frac{4}{7}=-4+\left(-\frac{4}{7}\right) \\
& -(5+3)=-5+(-3)
\end{aligned}
$$

Problem Set

1. Represent each sum as a single rational number.
a. $-14+\left(-\frac{8}{9}\right)$
b. $7+\frac{1}{9}$
c. $-3+\left(-\frac{1}{6}\right)$

Rewrite each of the following to show that the opposite of a sum is the sum of the opposites. Problem 2 has been completed as an example.
2. $-(9+8)=-9+(-8)$

$$
-17=-17
$$

3. $-\left(\frac{1}{4}+6\right)$
4. $-(10+(-6))$
5. $-\left((-55)+\frac{1}{2}\right)$

Use your knowledge of rational numbers to answer the following questions.
6. Meghan said the opposite of the sum of -12 and 4 is 8 . Do you agree? Why or why not?
7. Jolene lost her wallet at the mall. It had $\$ 10 \mathrm{in}$ it. When she got home, her brother felt sorry for her and gave her $\$ 5.75$. Represent this situation with an expression involving rational numbers. What is the overall change in the amount of money Jolene has?
8. Isaiah is completing a math problem and is at the last step: $25-28 \frac{1}{5}$. What is the answer? Show your work.
9. A number added to its opposite equals zero. What do you suppose is true about a sum added to its opposite? Use the following examples to reach a conclusion. Express the answer to each example as a single rational number.
a. $(3+4)+(-3+-4)$
b. $(-8+1)+(8+(-1))$
c. $\left(-\frac{1}{2}+\left(-\frac{1}{4}\right)\right)+\left(\frac{1}{2}+\frac{1}{4}\right)$

