In addition and multiplication, no matter how the numbers are grouped, the answer will always be the same.

$$
(a+b)+c=a+(b+c)
$$

$(4+6)+2$ gives the same total as $4+(6+2)$

$$
\begin{aligned}
& (4+6)+2=10+2=12 \\
& 4+(6+2)=4+8=12
\end{aligned}
$$

Addition and multiplication are both associative, subtraction and division are not.

In addition and multiplication, numbers may be added or multiplied together in any order.

$6+2=8$ and $2+6=8$
So why does order matter? Grouping numbers to equal ten makes them easier to add.
$7+9+6+2+4+3=$?
$(7+3)+(6+4)+9+2=31$

For subtraction and division, the order is important and should not be changed as this results in different answers
$(a \times b) \times c=a \times(b \times c)$
$(2 \times 3) \times 4$ gives the same total as $2 \times(3 \times 4)$

$$
\begin{aligned}
& (2 \times 3) \times 4=6 \times 4=24 \\
& 2 \times(3 \times 4)=2 \times 12=24
\end{aligned}
$$

\square

$a \times b=b \times a$, or $a b=b a$
$2 \times 3=6$ and $3 \times 2=6$
So why does order matter? When you have several
numbers to multiply, try to find an easier way.
$5 \times 17 \times 2$? or $5 \times 2 \times 17$?
$25 \times 23 \times 4$? or $4 \times 25 \times 23$?

Adding zero to a number won't change the number. In other words, it will not change the number's identity. Subtraction also works.

$$
\begin{array}{ll}
a+0=a & b-0=b \\
4+0=4 & 5-0=5
\end{array}
$$

Multiplying a number by one will not

 change the number. Multiplying by one does not change the number's identity. Division also works.$a \times 1=a$
$b \div 1=b$
$5 \times 1=5$
$6 \div 1=6$

A product can be written as the sum or difference of two or more products.
$15 \times 3=(10 \times 3)+(5 \times 3)$
$27 \times 8=(20 \times 8)+(7 \times 8)$

$$
\begin{aligned}
& 3(x+4)=3 x+12 \\
& 5(d-2)=5 d-10
\end{aligned}
$$

$$
a(a+b-4)=a^{2}+a b-4 a
$$

uo!łeכ!|d!ן|nW pue uo!l! Pp $\ddagger 0$

uo!̣eग!!d!nnw
pue uo!!!pp \forall до

uo!ңeכ!!d! ! n w
pue uo!!! pp \forall !

