\qquad Date \qquad

Lesson 1: Why Move Things Around?

Exit Ticket

First, draw a simple figure and name it Figure W. Next, draw its image under some transformation (i.e., trace your Figure W on the transparency), and then move it. Finally, draw its image somewhere else on the paper.

Describe, intuitively, how you moved the figure. Use complete sentences.
\qquad Date \qquad

Lesson 2: Definition of Translation and Three Basic Properties

Exit Ticket

1. Name the vector in the picture below.

2. Name the vector along which a translation of a plane would map point A to its image $T(A)$.
. T(A)

3. Is Maria correct when she says that there is a translation along a vector that maps segment $A B$ to segment $C D$? If so, draw the vector. If not, explain why not.

4. Assume there is a translation that maps segment $A B$ to segment $C D$ shown above. If the length of segment $C D$ is 8 units, what is the length of segment $A B$? How do you know?
\qquad Date \qquad

Lesson 3: Translating Lines

Exit Ticket

1. Translate point Z along vector $\overrightarrow{A B}$. What do you know about the line containing vector $\overrightarrow{A B}$ and the line formed when you connect Z to its image Z^{\prime} ?

2. Using the above diagram, what do you know about the lengths of segments $Z Z^{\prime}$ and $A B$?
3. Let points A and B be on line L and the vector $\overrightarrow{A C}$ be given, as shown below. Translate line L along vector $\overrightarrow{A C}$. What do you know about line L and its image, L^{\prime} ? How many other lines can you draw through point C that have the same relationship as L and L^{\prime} ? How do you know?

\qquad Date \qquad

Lesson 4: Definition of Reflection and Basic Properties

Exit Ticket

1. Let there be a reflection across line $L_{A B}$. Reflect $\triangle C D E$ across line $L_{A B}$. Label the reflected image.

Picture not drawn to scale.

2. Use the diagram above to state the measure of Reflection $(\angle C D E)$. Explain.
3. Use the diagram above to state the length of segment Reflection(CE). Explain.
4. Connect point C to its image in the diagram above. What is the relationship between line $L_{A B}$ and the segment that connects point C to its image?
\qquad Date \qquad

Lesson 5: Definition of Rotation and Basic Properties

Exit Ticket

1. Given the figure H, let there be a rotation by d degrees, where $d \geq 0$, about O. Let Rotation (H) be H^{\prime}. Note the direction of the rotation with an arrow.

2. Using the drawing above, let Rotation ${ }_{1}$ be the rotation d degrees with $d<0$, about O. Let Rotation (H) be $H^{\prime \prime}$. Note the direction of the rotation with an arrow.
\qquad Date \qquad

Lesson 6: Rotations of 180 Degrees

Exit Ticket

Let there be a rotation of 180 degrees about the origin. Point A has coordinates $(-2,-4)$, and point B has coordinates $(-3,1)$, as shown below.

1. What are the coordinates of Rotation (A) ? Mark that point on the graph so that Rotation $(A)=A^{\prime}$. What are the coordinates of Rotation (B) ? Mark that point on the graph so that Rotation $(B)=B^{\prime}$.
2. What can you say about the points A, A^{\prime}, and O ? What can you say about the points B, B^{\prime}, and O ?
3. Connect point A to point B to make the line $L_{A B}$. Connect point A^{\prime} to point B^{\prime} to make the line $L_{A^{\prime} B^{\prime}}$. What is the relationship between $L_{A B}$ and $L_{A^{\prime} B^{\prime}}$?
