\qquad

1. A bus travels 320 miles in 6.4 hours. If the bus continues at the same rate, which proportion can be used to find m, the number of miles the bus will travel in 9 hours?
A $\frac{320}{6.4}=\frac{9}{m}$
C $\quad \frac{9}{320}=\frac{6.4}{m}$
B $\frac{9}{m}=\frac{6.4}{320}$
D $\frac{6.4}{9}=\frac{m}{320}$
2. Maria filled 4 jars with jam using 3 pounds of strawberries. Which proportion can be used to find out how many jars Maria can fill with 9 pounds of strawberries?
A $\frac{3}{4}=\frac{9}{x}$
C $\frac{3}{x}=\frac{4}{9}$
B $\frac{3}{4}=\frac{x}{9}$
D $\quad \frac{4}{9}=\frac{x}{3}$
3. Regan is paid $\$ 128$ for creating 8 cartoon drawings at the town festival. Which proportion can be used to calculate how much she is paid for each cartoon she draws?
A $\frac{8}{\$ 128}=\frac{x}{1}$
C $\frac{8}{\$ 128}=\frac{1}{x}$
B $\frac{8}{x}=\frac{\$ 128}{1}$
D $\frac{\$ 128}{8}=\frac{1}{x}$
4. In a photograph, a stadium measures 8 inches across by 2 inches high. If the actual stadium measures 500 feet across, which equation can be used to find x, the height of the stadium in feet?
A $\frac{x}{500}=\frac{2}{8}$
C $500-x=8-2$
B $\quad \frac{500}{x}=\frac{2}{8}$
D $\quad 500+8=x+2$
5. Arnold has a picture frame with a width of 8 inches and a height of 6 inches. Which proportion could be used to calculate the dimensions of a smaller frame with a width of 5 inches, that is similar to the larger one?
A $\frac{8}{6}=\frac{5}{x}$
C $\quad \frac{6}{5}=\frac{x}{8}$
B $\quad \frac{8}{6}=\frac{x}{5}$
D $\frac{8}{x}=\frac{5}{6}$
6. Professor Smith has a total of 250 students, $\frac{3}{5}$ of whom are female. If x represents the number of female students, which of the following could be used to find x ?
A $\frac{3}{5}=\frac{x}{250}$
C $\quad \frac{3}{5}=\frac{250}{x}$
B $\frac{3}{x}=\frac{250}{5}$
D $\frac{2}{5}=\frac{x}{250}$
7. Shana bought 8 apples for $\$ 4$ during a sale at her neighborhood market. Which proportion can be used to calculate the expected cost of 12 apples?
A $\quad \frac{\$ 4}{8}=\frac{d}{12}$
C $\frac{8}{d}=\frac{12}{\$ 4}$
B $\frac{\$ 4}{12}=\frac{8}{d}$
D $\quad \frac{d}{12}=\frac{8}{\$ 4}$
8. Aaron's grandparents agreed to donate $\$ 3$ each time he runs 2 laps at his school's Booster-thon Fun Run event. Which proportion can Aaron use to determine how many laps he must run in order to earn $\$ 30$ for his school?
A $\frac{2}{\$ 3}=\frac{l}{\$ 30}$
C $\quad \frac{l}{2}=\frac{\$ 3}{\$ 30}$
B $\frac{2}{\$ 30}=\frac{\$ 3}{l}$
D $\frac{l}{\$ 30}=\frac{\$ 3}{2}$
